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Abstract
We derive a novel multiple integral representation for a generating function of
the σ z–σ z correlation functions of the spin- 1

2 XXZ chain at finite temperature
and finite, longitudinal magnetic field. Our work combines algebraic Bethe
ansatz techniques for the calculation of matrix elements with the quantum
transfer matrix approach to thermodynamics.

PACS numbers: 05.30.−d, 75.10.Pq

1. Introduction

The quantum transfer matrix [16, 17] is a means which makes it possible to calculate finite
temperature properties of one-dimensional quantum spin systems. It becomes particularly
efficient [7, 8] for the so-called integrable models which are related to representations of
the Yang–Baxter algebra and are solvable by Bethe ansatz. Among these models the spin- 1

2
XXZ chain (henceforth referred to as the XXZ chain) is one of the most thoroughly studied
models (see, e.g., [2, 18, 12]). In contrast to many other integrable models, its spectral
properties and thermodynamics are well understood. In addition, efficient formulae for norms
[11], scalar products [15], and the multiple action of certain non-local operators [5] are
available for the generalized model [11] defined by the R-matrix of the XXZ chain. These
technical achievements led to the derivation of certain multiple integral representations for
(static) two-point correlation functions and generating functions of two-point functions at zero
temperature [5].

In this work we show how the results of [5] can be generalized to finite temperatures.
We concentrate on the generating function of the σ z–σ z-correlation functions [3]. We use the
quantum transfer matrix and the formalism of non-linear integral equations in order to express
it as a multiple integral over the same auxiliary function that determines the free energy of
the model. In the zero temperature limit we recover the result of [5]. An extension of our
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results to other finite temperature correlation functions of the XXZ chain is possible and will
be published elsewhere.

After providing the necessary foundations for treating correlation functions at finite
temperatures in section 2 we derive our main result in section 3, which is the integral
formula (116) in theorem 1. As a special case of (116) we obtain an integral representation
for the so-called emptiness formation probability [13] of the XXZ chain at finite temperature.
In order to keep our presentation short, we formulate our results in the first instance only for
the off-critical regime (� > 1) of the model. Note, however, that our method applies for
arbitrary values of the anisotropy parameter. In section 4 which is devoted to an outlook and
to conclusions we indicate how our results have to be modified in the critical regime.

2. Foundations

2.1. Hamiltonian and R-matrix

The Hamiltonian of the L-site XXZ chain,

HXXZ = J

L∑
j=1

(
σx

j−1σ
x
j + σ

y

j−1σ
y

j + �
(
σ z

j−1σ
z
j − 1

))
, (1)

is defined on the L-fold tensor product (C2)⊗L through the elementary operators σα
j , α =

x, y, z, which act as Pauli matrices on the jth factor and trivially elsewhere. For j = 0 we set
σα

0 = σα
L , thereby specifying the boundary conditions to be periodic. J > 0 fixes the energy

scale, and the real parameter � is the anisotropy parameter of the model.
The Hamiltonian (1) is closely related to a certain trigonometric solution

R(λ,µ) =


1 0 0 0

0 sh(λ−µ)

sh(λ−µ+η)

sh(η)

sh(λ−µ+η)
0

0 sh(η)

sh(λ−µ+η)

sh(λ−µ)

sh(λ−µ+η)
0

0 0 0 1

 (2)

of the Yang–Baxter equation which not only allows one to diagonalize the Hamiltonian by
means of the algebraic Bethe ansatz, but will also enable us to associate a quantum transfer
matrix with the model that will be our principal tool for calculating its finite temperature
properties. We shall now briefly review the general theory.

For simplicity we shall restrict ourselves to fundamental models. These are models which
are completely determined by a numerical d2 ×d2 matrix R(λ,µ) ∈ End

(
C

d ⊗C
d
)

satisfying
the Yang–Baxter equation1

R
αβ

α′β ′(λ, µ)R
α′γ
α′′γ ′(λ, ν)R

β ′γ ′
β ′′γ ′′(µ, ν) = R

βγ

β ′γ ′(µ, ν)R
αγ ′
α′γ ′′(λ, ν)R

α′β ′
α′′β ′′(λ, µ). (3)

This equation is nowadays not usually presented in components, but either graphically or in
‘operator form‘ with respect to the gl(d) standard basis2 canonically embedded into

(
C

d
)⊗L

.
In the latter case one defines

Rjk(λ, µ) = R
αγ

βδ (λ, µ)ej
β
α
ek

δ
γ . (4)

1 Here and in the following we sum over doubly occurring Greek indices.
2 The basis consists of all d × d matrices e

β
α having a single 1 at the intersection of the αth row with the βth

column. Accordingly, the basis matrices multiply as e
β
αeδ

γ = δ
β
γ eδ

α . The canonical embedding is defined by

ej
β
α

= I
⊗(j−1)

d ⊗ e
β
α ⊗ I

⊗(L−j)

d with Id being the d × d unit matrix.
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Then (3) is equivalent to

R12(λ, µ)R13(λ, ν)R23(µ, ν) = R23(µ, ν)R13(λ, ν)R12(λ, µ). (5)

A Hamiltonian associated with the R-matrix R(λ,µ) is usually constructed as follows.
First of all an L-matrix at site j with matrix elements

Lj
α
β
(λ, µ) = R

αγ

βδ (λ, µ)ej
δ
γ

(6)

is introduced. These matrix elements are operators in (End(Cd))⊗L. Multiplication of the
Yang–Baxter equation (3) by ej

γ ′′
γ

implies that

Ř(λ, µ)(Lj (λ, ν) ⊗ Lj(µ, ν)) = (Lj (µ, ν) ⊗ Lj(λ, ν))Ř(λ, µ), (7)

where Ř
αγ

βδ = R
γα

βδ . One says that Lj(λ, ν) is a representation of the Yang–Baxter algebra
with R-matrix R(λ,µ). This representation is called the fundamental representation. Next, a
monodromy matrix T (λ) is introduced,

T (λ) = LL(λ, ν) . . . L1(λ, ν). (8)

Since
[
Lj+1

α
β
(λ, ν), Lj

γ

δ (λ, ν)
] = 0 it follows that

Ř(λ, µ)(T (λ) ⊗ T (µ)) = (T (µ) ⊗ T (λ))Ř(λ, µ). (9)

This means that also T (λ) is a representation of the Yang–Baxter algebra, a property which
we use synonymously with integrability.

We shall assume that R(λ,µ) is regular in the sense that R(0, 0) = P is the permutation
matrix acting on C

d ⊗ C
d . Then it follows that Lj

α
β
(0, 0) = ej

α
β

and further, setting ν = 0 in
(8), that the transfer matrix, defined as

t (λ) = Tr(T (λ)), (10)

has the expansion

t (λ) = Û exp{λH + O(λ2)} (11)

around λ = 0. Here Û = t (0) is the shift operator and

H = Û−1t ′(0) =
L∑

j=1

∂λŘj−1,j (λ, 0)

∣∣∣
λ=0

(12)

is the Hamiltonian associated with the fundamental representation (6) of the Yang–Baxter
algebra. Note that periodic boundary conditions, Ř01 = ŘL1, are implied in (12).

Employing the usual convention for tensor products we may interpret the matrix (2)
as a linear operator in C

2 ⊗ C
2. It is then easy to show that it satisfies the Yang–Baxter

equation (3). Inserting (2) into the right-hand side of (12) we obtain

H = 1

2 sh(η)

L∑
j=1

(
σx

j−1σ
x
j + σ

y

j−1σ
y

j + ch(η)
(
σ z

j−1σ
z
j − 1

))
. (13)

Thus,

HXXZ = 2J sh(η)H (14)

if we identify � = ch(η).
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2.2. The Trotter–Suzuki formula

Consider the elementary formula

lim
N→∞

(
1 +

XN

N

)N

= eX, (15)

valid for any sequence (XN)N∈N of complex numbers converging to X. It still works [16] for
a matrix (an operator) X = −βH . Hence, (11) and (15) imply that

lim
N→∞

(
Û−1t

(
− β

N

))N

= lim
N→∞

(
1 +

1

N

(
−βH + O

(
1

N

)))N

= e−βH . (16)

This is a special form of the Trotter–Suzuki formula for the statistical operator e−H/T if we
choose β to be the inverse temperature, β = 1/T .

2.3. The quantum transfer matrix

We would like to use the Trotter–Suzuki formula (16) in a way that is compatible with the
special structure of integrable models. In this context, it will turn out to be useful to introduce
N auxiliary spaces denoted by indices 1̄, . . . , N̄ and to work with R-operators rather than
L-matrices.

We introduce two types of monodromy matrices: type one,

Tj̄ (λ) = Rj̄L(λ, µ) . . . Rj̄1(λ, µ), (17)

and type two,

T j̄ (λ) = R1j̄ (µ, λ) . . . RLj̄ (µ, λ). (18)

Remark. If R is unitary, R12(λ, µ)R21(µ, λ) = id, then T j̄ (λ) = T −1
j̄

(λ).

By construction the trace of the monodromy matrix Tj̄ (λ) with respect to the auxiliary
space is the usual transfer matrix, t (λ) = Trj̄ (Tj̄ (λ)). The structure of t̄ (λ) = Trj̄ (T j̄ (λ)) can
most easily be explored by means of the parity operator P̂ which we define by its action on
the canonical basis of local operators, P̂ ej

α
β
P̂ = eL−j+1

α
β
. Then

T j̄ (λ) = P̂ (PRP )j̄L(µ, λ) . . . (PRP )j̄1(µ, λ)P̂ . (19)

Here one has to be careful not to confuse the parity operator P̂ with the permutation matrix P.
In (19) we set µ = 0, take the trace in space j̄ and take into account that the parity operator
acts only in quantum space. We infer with (11), (12) that

t̄ (λ) = P̂ Û exp

λ

L∑
j=1

∂λ(PRP )̌j−1j (0, λ)

∣∣∣∣∣∣
λ=0

+ · · ·
 P̂

= exp

λ

L∑
j=1

∂λŘj−1j (0, λ)

∣∣∣∣∣∣
λ=0

+ O(λ2)

 Û−1, (20)

where we used in the second equation that (PRP )j−1j = Rjj−1 and P̂ Û P̂ = Û−1.
In the following we shall assume that

∂λŘj−1j (0, λ)|λ=0 = −∂λŘj−1,j (λ, 0)|λ=0. (21)
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This is certainly true for R-matrices of difference form like (2) but also for other more general
R-matrices like the R-matrix of the Hubbard model. Combining (11), (12), (20) and (21) we
obtain

ρN,L :=
(

t̄

(
β

N

)
t

(
− β

N

)) N
2

=
(

1 +
2

N

(
−βH + O

(
1

N

))) N
2

. (22)

Using the second equation (16) we conclude that

lim
N→∞

ρN,L = e−βH . (23)

The latter expression is very useful for integrable models. It leads us rather directly to the
notion of the quantum transfer matrix, for we may write

ρN,L = Tr1̄...N̄

{
T N̄

(
β

N

)
TN−1

(
− β

N

)
. . . T 2̄

(
β

N

)
T1̄

(
− β

N

)}
= Tr1̄...N̄

{
T N̄

(
β

N

)
T t

N−1

(
− β

N

)
. . . T 2̄

(
β

N

)
T t

1̄

(
− β

N

)}
= Tr1̄...N̄

{
R1N̄

(
µ,

β

N

)
R2N̄

(
µ,

β

N

)
. . . RLN̄

(
µ,

β

N

)
× R

t1

N−11

(
− β

N
,µ

)
R

t1

N−12

(
− β

N
,µ

)
. . . R

t1

N−1L

(
− β

N
,µ

)
. . .

× R12̄

(
µ,

β

N

)
R22̄

(
µ,

β

N

)
. . . RL2̄

(
µ,

β

N

)
× R

t1
1̄1

(
− β

N
,µ

)
R

t1
1̄2

(
− β

N
,µ

)
. . . R

t1
1̄L

(
− β

N
,µ

)}∣∣∣∣
µ=0

= Tr1̄...N̄

{
R1N̄

(
µ,

β

N

)
R

t1

N−11

(
− β

N
,µ

)
. . . R

t1
1̄1

(
− β

N
,µ

)
. . .

× RLN̄

(
µ,

β

N

)
R

t1

N−1L

(
− β

N
,µ

)
. . . R

t1
1̄L

(
− β

N
,µ

)}∣∣∣∣
µ=0

= Tr1̄...N̄

{
T

QT M
1 (0) . . . T

QT M
L (0)

}
. (24)

Here the transpose with respect to space 1 occurring in the third equation is defined by
Rt1 αγ

βδ = R
βγ

αδ . Note that we have reordered the product of R-matrices in the fourth equation
and have introduced another monodromy matrix,

T
QTM
j (λ) = RjN̄

(
λ,

β

N

)
R

t1

N−1j

(
− β

N
, λ

)
. . . Rj 2̄

(
λ,

β

N

)
R

t1
1̄j

(
− β

N
, λ

)
(25)

in the fifth equation. This monodromy matrix and the corresponding transfer matrix

tQTM(λ) = Trj T
QTM
j (λ), (26)

which will be called the quantum transfer matrix, are our main tools for exploring the finite
temperature properties of the XXZ chain below.

The quantum transfer matrix is useful mainly for two reasons. First, in the thermodynamic
limit L → ∞ a single leading eigenvalue of the quantum transfer matrix determines the free
energy. Second, the spectrum of the quantum transfer matrix at finite Trotter number N can
be calculated by means of the algebraic Bethe ansatz. Let us explain this in more detail.
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Using (24) the partition function for a quantum chain of length L is calculated as

ZL = lim
N→∞

Tr1...LρN,L︸ ︷︷ ︸
=:ZN,L

= lim
N→∞

Tr1̄...N̄ (tQTM(0))L =
∞∑

n=1

�L
n (0), (27)

where the �n(0) are the eigenvalues of the quantum transfer matrix in the Trotter limit N → ∞
at spectral parameter λ = 0. The free energy per lattice site in the thermodynamic limit is as
follows,

f = − lim
L→∞

lim
N→∞

ln(ZN,L)

βL
= − ln(�0(0))

β
(28)

if �0(0) is the (finitely degenerate) leading eigenvalue of the quantum transfer matrix. For the
remainder we shall accept the following:

(i) The limits L → ∞ and N → ∞ are interchangeable [16, 17].
(ii) The leading eigenvalue of the quantum transfer matrix is non-degenerate, real and positive

and in the Trotter limit is separated from the next-to-leading eigenvalues by a gap.

The thermodynamics of the model under scrutiny is then determined by the leading eigenvalue
�0(0) of the quantum transfer matrix in the Trotter limit N → ∞.

We have seen that instead of calculating the infinitely many eigenvalues of the usual
transfer matrix which determine the spectrum of the Hamiltonian it suffices to calculate a
single eigenvalue of the quantum transfer matrix. Now we shall see that the quantum transfer
matrix is a representation of the same Yang–Baxter algebra as the ordinary transfer matrix.
Taking the transpose with respect to space 1 in (5) we obtain

R23(λ, µ)R
t1
12(ν, λ)R

t1
13(ν, µ) = R

t1
13(ν, µ)R

t1
12(ν, λ)R23(λ, µ). (29)

Then, because of (5) and (29), the monodromy matrix (25) provides a representation of the
Yang–Baxter algebra,

Rjk(λ, µ)T
QTM
j (λ)T

QTM
k (µ) = T

QTM
k (µ)T

QTM
j (λ)Rjk(λ, µ). (30)

This means that the leading eigenvalue of the quantum transfer matrix may be obtained by
algebraic Bethe ansatz (or possibly by one of the other powerful methods connected with the
Yang–Baxter algebra as, e.g., the method of separation of variables [14]).

2.4. Correlation functions within the quantum transfer matrix approach

The quantum transfer matrix approach allows us to calculate, in principle, finite temperature
correlation functions of local operators by means of the algebraic Bethe ansatz. Here we shall
consider correlation functions of the form〈

X
(1)
j . . . X

(k−j+1)

k

〉
T

= lim
L→∞

Tr1,...,L e−βH X
(1)
j . . . X

(k−j+1)

k

Tr1,...,L e−βH
, (31)

where j, k ∈ {1, . . . , L}, j � k and the X(n)
m are arbitrary local operators. Using (23) and (24)

we rewrite (31) as〈
X

(1)
j . . . X

(k−j+1)

k

〉
T

= lim
N,L→∞

Tr1̄...N̄Tr1...LT
QTM

1 (0) . . . T
QTM
L (0)X

(1)
j . . . X

(k−j+1)

k

/
ZN,L

= lim
N,L→∞

Tr1̄...N̄ (tQTM(0))j−1Tr{T QTM(0)X(1)} . . . Tr{T QTM(0)X(k−j+1)}
× (tQTM(0))L−k/ZN,L
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= lim
N,L→∞

∑dN −1
n=0 �

L−k+j−1
n (0)〈
n|Tr{T QTM(0)X(1)} . . . Tr{T QTM(0)X(k−j+1)}|
n〉∑dN −1

n=0 �L
n (0)

= lim
N→∞

�
j−k−1
0 (0)〈
0|Tr{T QTM(0)X(1)} . . . Tr{T QTM(0)X(k−j+1)}|
0〉. (32)

Here we assumed that the quantum transfer matrix is similar to a diagonal matrix3 and has
‘normalized’ eigenvectors |
n〉. We see that a single normalized eigenvector |
0〉 and the
corresponding eigenvalue �0(λ) of the quantum transfer matrix completely determine the
finite temperature correlation functions of local operators.

Let us consider two examples related to the XXZ chain. In this case d = 2, and we can
represent the monodromy matrix (25) as a 2 × 2 matrix

T QTM(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
(33)

in ‘auxiliary space’.

Example. X(1) = σ−, X(k−j+1) = σ +, and all other X(n) are equal to the 2 × 2 unit matrix I2.
Then (32) turns into〈

σ−
j σ +

k

〉
T

= lim
N→∞

�
j−k−1
0 (0)〈
0|B(0)(A(0) + D(0))k−j−1C(0)|
0〉. (34)

Example. X(1) = X(2) = · · · = X(k−j+1) = eϕe2
2 = (1 0

0 eϕ

)
and j = 1, k = m. In this case (32)

turns into 〈
exp

{
ϕ

m∑
n=1

en
2
2

}〉
T

= lim
N→∞

�−m
0 (0)〈
0|(A(0) + eϕD(0))m|
0〉. (35)

This special correlation function [3] is a generating function of the σ z–σ z correlation functions
which can be expressed as〈

σ z
1 σ z

m

〉
T

= (2D2
m∂2

ϕ − 4Dm∂ϕ + 1
) 〈

exp

{
ϕ

m∑
n=1

en
2
2

}〉
T

∣∣∣∣∣
ϕ=0

, (36)

where Dm is the ‘lattice derivative’ defined on any complex sequence (an)n∈N by Dmam =
am − am−1. The function (35) generates a number of other interesting correlation functions
that will be discussed below after we have derived an integral representation for (35).

The main goal of this work is to represent the generating function (35) as a multiple
integral. The reason why we begin our study of finite temperature correlation functions with
the generating function (35) and not with any two-point function like (34) is that (35) is slightly
more simple than the other interesting correlation functions, because the individual factors
in the product of operators on the right-hand side of (35) are closely related to the quantum
transfer matrix.

The expectation value on the right-hand side of (35) cannot easily be calculated directly.
Instead, we shall introduce an inhomogeneous version of it and shall perform the homogeneous
limit only at the end of our calculation. We introduce a ‘twisted quantum transfer matrix’ of
the XXZ chain as

tϕ(λ) = A(λ) + eϕD(λ). (37)

3 This is known for the XXZ chain, but not in the general case.
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For brevity we have suppressed the label QTM here. It follows from the Yang–Baxter algebra
(30) that the twisted quantum transfer matrices tϕ(λ) for fixed ϕ form a commutative family,

[tϕ(λ), tϕ(µ)] = 0. (38)

For any set {ξ} = {ξj }mj=1, ξj ∈ C, we define a function

�N(ϕ|{ξ}) = 〈
0|
 m∏

j=1

tϕ(ξj )

 m∏
j=1

t−1
0 (ξj )

 |
0〉 (39)

depending symmetrically (because of (38)) on the ξj . Then the generating function (35) can
be calculated as〈

exp

{
ϕ

m∑
n=1

en
2
2

}〉
T

= lim
N→∞

lim
ξ1,...,ξm→0

�N(ϕ|{ξ}). (40)

Our strategy below will be to first calculate �N(ϕ|{ξ}) by means of the algebraic Bethe ansatz
and then transform the resulting expression into a form that will allow us to perform the
homogeneous limit and the Trotter limit on the right-hand side of (40).

2.5. Algebraic Bethe ansatz for the quantum transfer matrix

We shall now recall how to calculate spectrum and eigenvectors of the quantum transfer matrix
by means of the algebraic Bethe ansatz. The result of an algebraic Bethe ansatz calculation is
usually not explicit but expresses eigenvalues and eigenvectors in terms of the solutions of a
set of Bethe ansatz equations. To actually solve the Bethe ansatz equations is another problem
we deal with in the next section.

For the algebraic Bethe ansatz the form (9) of the Yang–Baxter algebra is more convenient
than (30). Hence, we shall write the monodromy matrix (25) of the quantum transfer matrix
as a 2 × 2 matrix. For this purpose, we first of all introduce two L-matrices L and L̃ setting

ea
β
αLj

α
β
(λ, µ) = Raj (λ, µ), ea

β
αL̃j

α

β
(−µ, λ) = R

t1
ja(−µ, λ). (41)

Comparing these equations with the explicit expression (2) for the R-matrix of the XXZ chain
we obtain the explicit forms of the two L-matrices,

Lj(λ, µ) =
(

ej
1
1 + b(λ, µ)ej

2
2 c(λ, µ)ej

1
2

c(λ, µ)ej
2
1 b(λ, µ)ej

1
1 + ej

2
2

)
, (42a)

L̃j (−µ, λ) =
(

ej
1
1 + b(−µ, λ)ej

2
2 c(−µ, λ)ej

2
1

c(−µ, λ)ej
1
2 b(−µ, λ)ej

1
1 + ej

2
2

)
, (42b)

where we have employed the shorthand notation

b(λ, µ) = sh(λ − µ)

sh(λ − µ + η)
, c(λ, µ) = sh(η)

sh(λ − µ + η)
. (43)

When expressed in terms of the L-matrices (42) the monodromy matrix of the quantum transfer
matrix becomes

T QTM(λ) = LN

(
λ,

β

N

)
L̃N−1

(
− β

N
, λ

)
. . . L̃1

(
− β

N
, λ

)
. (44)

This is now a 2 × 2 matrix of the form (33) in ‘auxiliary space’ which satisfies the defining
relations of the Yang–Baxter algebra of the form (9). Moreover, T QTM(λ) acts as an upper
triangular matrix on the vector

|0〉 = (e1 ⊗ e2)
⊗ N

2 = ( 1
0

)⊗ ( 0
1

)⊗ ( 1
0

)⊗ · · · ( 0
1

)︸ ︷︷ ︸
N factors

(45)
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which is obvious from the form of the L-matrices (42). More precisely,

C(λ)|0〉 = 0, A(λ)|0〉 = a(λ)|0〉, D(λ)|0〉 = d(λ)|0〉. (46)

where

a(λ) = b

(
− β

N
, λ

) N
2

=
(

sh
(
λ + β

N

)
sh
(
λ + β

N
− η
)) N

2

, (47a)

d(λ) = b

(
λ,

β

N

) N
2

=
(

sh
(
λ − β

N

)
sh
(
λ − β

N
+ η
)) N

2

. (47b)

The first equation (46) is sufficient for the algebraic Bethe ansatz to work. It can be performed
for arbitrary pseudo-vacuum eigenvalues a(λ) and d(λ) of the diagonal elements of the
monodromy matrix. These eigenvalues are often called ‘the parameters of the algebraic Bethe
ansatz’. Here they are given by (47). The parameters of the Bethe ansatz completely specify
the solution which for the general case can, for instance, be read up in [12].

The vector

|{λ}〉 = ∣∣{λj }Mj=1

〉 = B(λ1) . . . B(λM)|0〉 (48)

is an eigenvector of the quantum transfer matrix t0(λ) if the rapidities (or Bethe roots)
λj , j = 1, . . . ,M , satisfy the system

a(λj )

d(λj )
=

M∏
k=1
k �=j

sh(λj − λk + η)

sh(λj − λk − η)
(49)

of Bethe ansatz equations. The corresponding eigenvalue is

�(λ) = a(λ)

M∏
j=1

sh(λ − λj − η)

sh(λ − λj )
+ d(λ)

M∏
j=1

sh(λ − λj + η)

sh(λ − λj )
. (50)

Note that the ‘creation operators’ B(λj ) mutually commute. Therefore the eigenvector (48) is
symmetric in the rapidities, hence our notation |{λ}〉.

2.6. Leading eigenvalue and auxiliary function

In order to calculate the approximant �N(ϕ|{ξ}) to the generating function (35) of the σ z–σ z

correlation functions we need to know the specific solution {λ}Mj=1 of the Bethe ansatz
equations (49) that determines the leading eigenvalue �0(λ) and the corresponding eigenvector
|
0〉. This solution cannot be obtained in a closed analytic form. Even worse, unlike in the
case of the ordinary transfer matrix, the distribution of the Bethe roots cannot be approximated
by a smooth ‘density function’ in the Trotter limit, since they accumulate in the vicinity of
zero as N increases. A way out of these difficulties was proposed in [7, 8]. One associates an
auxiliary function

a(λ) = d(λ)

a(λ)

N/2∏
k=1

sh(λ − λk + η)

sh(λ − λk − η)
(51)

with the solution {λ} = {λk}
N
2
k=1 of the Bethe ansatz equations that determines the leading

eigenvalue of the quantum transfer matrix. It then turns out that the function a(λ) is sufficiently
well determined by the gross properties of {λ}. Knowing that the leading eigenvalue for fixed
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Figure 1. The canonical contour C for the off-critical regime � > 1.

Trotter number N is determined by

(i) M = N/2 Bethe roots4 which
(ii) are mutually distinct and

(iii) lie all on the imaginary axis

we can derive a non-linear integral equation which (alternatively) defines a(λ). The details
of the derivation have been described on several earlier occasions [9]. Here we only note
that (i)–(iii) can be established ‘perturbatively’ in the high temperature limit and have been
verified numerically for a wide range of Trotter numbers and temperatures. Conditions (i)–(iii)
determine the analytical properties of the auxiliary function a(λ):

(i) The auxiliary function a is meromorphic and periodic with period iπ in imaginary
direction.

(ii) It has 3N/2 poles (including multiplicities) in the fundamental domain D = {z ∈ C|
− π/2 < |Im z| � π/2}: N/2 simple poles at λj + η, j = 1, . . . , N/2; an N/2-fold pole
at λ = −β/N ; and an N/2-fold pole at λ = β/N − η.

(iii) The meromorphic function 1 + a has 3N/2 zeros in D: N/2 simple zeros at the Bethe
ansatz roots,

1 + a(λj ) = 0, (52)

clustering close to λ = 0 as β → 0; N/2 zeros which are close to η as β → 0; and N/2
zeros which accumulate at −η for β → 0. We assume for the latter two kinds of zeros
that the modulus of their real part stays larger than η/2 for all finite temperatures.

Once the analytical properties of a and 1 + a are established it is not difficult to derive the
following integral equation for the auxiliary function,

ln a(λ) = ln

[
sh
(
λ − β

N

)
sh
(
λ + β

N
+ η
)

sh
(
λ + β

N

)
sh
(
λ − β

N
+ η
)] N

2

−
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
, (53)

where (for � > 1) the contour C (see figure 1) is a rectangular contour with edges parallel
to the real axis at ±iπ/2 and to the imaginary axis at ±γ where 0 < γ < η/2. Equation
(53) is valid inside the rectangle Q defined by |Re λ| < η/2 and |Im λ| < π/2. This means
that it defines the auxiliary function a(λ) for all other λ in Q once it has been calculated on C.

4 This was already used in the definition (51) of a(λ). For technical reasons we assume that N/4 ∈ N.
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In particular, one may calculate the zeros of 1 + a inside C which, by construction (see (52)),
are those solutions of the Bethe ansatz equations that determine the leading eigenvalue and the
corresponding eigenvector. We will, however, not use equation (53) in this way. It turns out
that all quantities we are interested in, the free energy and the generating function of the σ z–σ z

correlation functions in particular, can be expressed as integrals over the auxiliary function a

on the contour C.
It is very important that the contour C of the integral on the right-hand side of (53) does

not depend on N. The Trotter number N merely appears as a parameter in the inhomogeneity
of the integral equation. Hence, the Trotter limit can be performed in (53). We obtain

ln a(λ) = − 2J sh2(η)

T sh(λ) sh(λ + η)
−
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
. (54)

Here we already took into account the rescaling of the Hamiltonian (see (14) and (16)) and
introduced the temperature T as

T = 2J sh(η)

β
. (55)

The auxiliary function a encodes the information about the location of those Bethe roots
that determine the leading eigenvalue of the quantum transfer matrix and the corresponding
eigenvector. Using the results of sections 2.3 and 2.4 we conclude that a thus encodes not only
the complete information about the free energy but also all the ‘thermodynamically relevant
information’ about the correlation functions of local operators.

2.7. Including the magnetic field

Before coming to the calculation of physical quantities in the next sections, we have to discuss
the issue of how to include a (longitudinal) magnetic field into the formalism. For this purpose,
we have to replace the statistical operator e−βH by e−(βH−hSz/T ), where h denotes the magnetic
field and

Sz = 1

2

L∑
j=1

σ z
j (56)

is the operator of the z-component of the total spin.
The reason why this is a rather simple task lies in the commutativity of the R-matrix (2)

with the tensorial square of the diagonal matrix � = diag(eθ , e−θ ),

[R(λ,µ),� ⊗ �] = 0. (57)

Taking the derivative of this equation with respect to θ at θ = 0 we obtain

[R(λ,µ), σ z ⊗ I2 + I2 ⊗ σ z] = 0. (58)

The latter equation implies that the ordinary transfer matrix and hence the Hamiltonian
commute with Sz. On the other hand (57) is equivalent to

Ř(λ, µ)(� ⊗ �) = (� ⊗ �)Ř(λ, µ), (59)

which means that � is a spectral parameter independent representation of the Yang–Baxter
algebra with R-matrix (2). It follows that

lim
N→∞

ρN,L e
hSz

T = e−(βH−hSz/T ), (60)

while, on the other hand,

ρN,L e
hSz

T = Tr1̄,...,N̄ T
QTM

1 (0)

(
eh/2T 0

0 e−h/2T

)
1

· · · T QTM
L (0)

(
eh/2T 0

0 e−h/2T

)
L

, (61)
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where T
QTM
j (λ) is the monodromy matrix corresponding to the quantum transfer matrix as

defined for zero magnetic field.
Thus, we can include a longitudinal magnetic field by simply replacing

T QTM(λ) → T QTM(λ)

(
eh/2T 0

0 e−h/2T

)
(62)

in our former calculations. The important point here is that, because of (59), the redefined
monodromy matrix is still a representation of the Yang–Baxter algebra with the same R-matrix
(2). Therefore our former calculations go through without almost any modification. We simply
replace a(λ) by a(λ) eh/2T and d(λ) by d(λ) e−h/2T in (49)–(51). The only point one then has
to take care of is that the loci of the Bethe roots that describe the leading eigenvalue are now
off the imaginary axis. As a consequence the parameter γ appearing in our definition of the
path above has to be chosen large enough (but still between zero and η/2). Then the only
modification of the integral equations (53) and (54) is the appearance of an extra term −h/T

on the right-hand side. For example, (54) turns into

ln a(λ) = − h

T
− 2J sh2(η)

T sh(λ) sh(λ + η)
−
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
. (63)

This is the non-linear integral equation for the auxiliary function a of the XXZ chain exposed
to a finite, longitudinal magnetic field h.

It is often useful (in particular when it comes to numerical calculations) to consider the
auxiliary function a together with its ‘dual’ a = 1/a. As we can see from equation (52) the
function a is equally useful in determining the Bethe roots, for 1 + a(λ) = 0 is equivalent
to 1 + a(λ) = 0. An integral equation for a can be directly obtained from (63). For this
purpose, we choose λ and ω from inside the rectangle Q. Then |Re λ|, |Re ω| < η/2 and hence
λ−ω±η �= 0. Taking this into account we change the free variable in equation (63) from λ to
ω, multiply it by sh(2η)/2π i sh(λ − ω + η) sh(λ − ω − η) and integrate over C. The resulting
formula is ∫

C

dω

2π i

sh(2η) ln(a(ω))

sh(λ − ω + η) sh(λ − ω − η)
= − 2J sh(η) sh(2η)

T sh(λ + η) sh(λ − η)
. (64)

We use it in (63) and obtain an integral equation for a:

ln a(λ) = h

T
− 2J sh2(η)

T sh(λ) sh(λ − η)
+
∫
C

dω

2π i

sh(2η) ln(1 + a(ω))

sh(λ − ω + η) sh(λ − ω − η)
. (65)

Comparing this with (63) we see that the formal difference consists in replacing h and η by
−h and −η.

2.8. Free energy and magnetization

Starting from expression (50) (properly modified such as to include the magnetic field) we can
derive expressions that represent the free energy per lattice site f as integrals either over a or
a (for details see [9]),

f (h, T ) = −h

2
− T

∫
C

dω

2π i

sh(η) ln(1 + a(ω))

sh(ω) sh(ω + η)
= h

2
+ T

∫
C

dω

2π i

sh(η) ln(1 + a(ω))

sh(ω) sh(ω − η)
. (66)

From these equations the thermodynamic properties of the XXZ chain can be calculated.
For example, the magnetization per unit length of the chain at finite magnetic field h and finite
temperature T, defined as

m(h, T ) = lim
L→∞

〈Sz〉h,T

L
(67)
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can be calculated by means of the thermodynamic relation

m(h, T ) = −∂f (h, T )

∂h
. (68)

Introducing the function

σ(λ) = −T ∂ha(λ)

a(λ)
= T ∂ha(λ)

a(λ)
(69)

and taking the derivative of (66) with respect to the magnetic field, we obtain

m(h, T ) = −1

2
−
∫
C

dω

2π i

sh(η)

sh(ω) sh(ω − η)

σ (ω)

1 + a(ω)
. (70)

Instead of calculating the explicit h-dependence of the functions a or a and from this the
function σ , we may calculate it from the linear integral equation

σ(λ) = 1 +
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

σ (ω)

1 + a(ω)
(71)

obtained from (65) by taking the derivative with respect to h. Equation (71) is numerically
better conditioned than (69) and therefore particularly useful if one is interested in numbers.

For later use, we derive another formula for the magnetization using an analogy with the
dressed function formalism for the density functions at zero temperature. We define a function
G(λ) as the solution of the linear integral equation

G(λ) = sh(η)

sh(λ) sh(λ − η)
+
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

G(ω)

1 + a(ω)
. (72)

Then it is not difficult to show that∫
C

dω

2π i

sh(η)

sh(ω) sh(ω − η)

σ (ω)

1 + a(ω)
=
∫
C

dω

2π i

G(ω)

1 + a(ω)
, (73)

and it follows from (70), (72) that

m(h, T ) = −1

2
−
∫
C

dω

2π i

G(ω)

1 + a(ω)
= 1

2
+
∫
C

dω

2π i

G(ω)

1 + a(ω)
. (74)

3. Results

3.1. Combinatorics

We shall now derive our main result which is an integral formula for the generating function (35)
of the σ z–σ z correlation functions of the XXZ chain. The general strategy we are going to
pursue is to first calculate the inhomogeneous, finite Trotter number approximant �N(ϕ|{ξ}),
equation (39), and then transform it into a form such that the limits in (40) can be performed.

The Bethe ansatz eigenvectors (48) are not ‘normalized’. Hence, �N(ϕ|{ξ}), when
expressed through the Bethe ansatz eigenvectors takes the form

�N(ϕ|{ξ}) = 〈{λ}|[∏m
j=1 tϕ(ξj )

][∏m
j=1 t−1

0 (ξj )
]|{λ}〉

〈{λ}|{λ}〉 , (75)

where the λj in {λ} are those that characterize the leading eigenvalue. The dual 〈{λ}| to |{λ}〉
can be expressed through the action of the operators C(λ) (see (33)) on the dual pseudo-vacuum
〈0| which is the transposed form of |0〉,

〈{λ}| = 〈0|C(λ1) . . . C(λN/2). (76)
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In order to evaluate the numerator in (75) we calculate in the first instance the left action
of
∏m

j=1 tϕ(ξj ) on 〈{λ}|. In this task we can largely follow [5]. The basic idea is to use the
commutation relations

C(µ)A(λ) = f (µ, λ)A(λ)C(µ) − g(µ, λ)A(µ)C(λ), (77a)

C(µ)D(λ) = f (λ, µ)D(λ)C(µ) − g(λ, µ)D(µ)C(λ) (77b)

contained in the defining relations (9) of the Yang–Baxter algebra in order to move the operators
A and D (implicit in the expression tϕ) in

〈0|C(λ1) . . . C(λN/2)tϕ(ξ1) . . . tϕ(ξm) (78)

to the left and replace them with their pseudo-vacuum expectation values a and d (which are
the same for right action on the pseudo-vacuum and left action on its dual (see (42))). Our
notation employed in (77) is

f (λ, µ) = sh(λ − µ + η)

sh(λ − µ)
, g(λ, µ) = sh(η)

sh(λ − µ)
. (79)

Except for the commutation relations (77) one needs in the actual calculation the mutual
commutativity of the families of operators C(λ) and tϕ(λ), respectively,

[C(λ), C(µ)] = [tϕ(λ), tϕ(µ)] = 0, (80)

which also follows from (9).
When we apply (77) successively in (78) in order to move the operators A and D to the

very left, then the number of operators C per term in a single application of (77) is conserved.
Merely the arguments of the commuted operators are exchanged in every possible way. To
state this more formally we need to introduce an appropriate notation for sets and partitions
of sets.

We shall deal with finite sets of complex numbers such as {λj }Mj=1. For such sets we already
introduced the shorthand notation {λ} = {λj }Mj=1. Similarly we shall write {ξ} = {ξj }Mj=1 etc.
The number of elements in these sets will be somewhat loosely denoted as |λ|, |ξ |, . . . . We
further need partitions of sets into disjoint subsets. By p2{λ} we shall denote the set of all
ordered pairs ({λ+}, {λ−}) of subsets {λ+}, {λ−} ⊂ {λ} which satisfy {λ+} ∪ {λ−} = {λ} and
{λ+} ∩ {λ−} = ∅. The elements of the subsets {λ±} will be denoted by λ±

j , such that we can

write {λ±} = {λ±
j

}|λ±|
j=1 if we want to emphasize the number of elements in the subsets. Using

our new notation we conclude with (77) and (80) that

〈{λ}|
|ξ |∏

j=1

tϕ(ξj ) =
∑

({λ+},{λ−})∈p2{λ}
({ξ+},{ξ−})∈p2{ξ}
|ξ+|+|λ−|=N/2

R({ξ+}|{ξ−}|{λ+}|{λ−})〈{ξ+} ∪ {λ−}| (81)

with numerical coefficients R depending on the sets {ξ±}, {λ±}. These coefficients can be
calculated in the general situation of arbitrary vacuum expectation values a, d of the diagonal
elements of the monodromy matrix and for arbitrary sets of mutually distinct complex numbers
{ξ}, {λ}, where the λj do not necessarily satisfy the Bethe ansatz equations.

Lemma 1 ([5]). The coefficients R({ξ+}|{ξ−}|{λ+}|{λ−}) in (81) are given by the formula

R({ξ+}|{ξ−}|{λ+}|{λ−}) = S({ξ+}|{λ+}|{λ−})
|ξ−|∏
j=1

a(ξ−
j )

 |ξ+|∏
k=1

f
(
ξ+
k , ξ−

j

)|λ−|∏
l=1

f (λ−
l , ξ−

j )


+ eϕd(ξ−

j )

 |ξ+|∏
k=1

f
(
ξ−
j , ξ+

k

)|λ−|∏
l=1

f (ξ−
j , λ−

l )

 , (82)
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where the so-called highest coefficient S({ξ+}|{λ+}|{λ−}) can be expressed as the ratio of two
determinants,

S({ξ+}|{λ+}|{λ−}) = det M̂
(
λ+

j , ξ
+
k

)
det V

(
λ+

j , ξ
+
k

) (83)

with

V
(
λ+

j , ξ
+
k

) = 1

sh
(
ξ+
k − λ+

j

) , (84)

M̂
(
λ+

j , ξ
+
k

) = a
(
λ+

j

)
t
(
ξ+
k , λ+

j

) |ξ+|∏
l=1

f
(
ξ+
l , λ+

j

) |λ−|∏
m=1

f
(
λ−

m, λ+
j

)
− eϕd

(
λ+

j

)
t
(
λ+

j , ξ
+
k

) |ξ+|∏
l=1

f
(
λ+

j , ξ
+
l

) |λ−|∏
m=1

f
(
λ+

j , λ
−
m

) , (85)

t (λ, ξ) = sh(η)

sh(λ − ξ) sh(λ − ξ + η)
. (86)

We may now insert (81) into (75) and use the fact, that the vector |{λ}〉 in (75) is the
eigenvector of the quantum transfer matrix that belongs to the leading eigenvalue

�0(λ) = a(λ)

N/2∏
j=1

f (λj , λ) + d(λ)

N/2∏
j=1

f (λ, λj ) (87)

(see (50)). We obtain

�N(ϕ|{ξ}) =
∑

({λ+},{λ−})∈p2{λ}
({ξ+},{ξ−})∈p2{ξ}
|ξ+|+|λ−|=N/2

R({ξ+}|{ξ−}|{λ+}|{λ−})〈{ξ+} ∪ {λ−}|{λ}〉[∏|ξ |
j=1 �0(ξj )

]
〈{λ}|{λ}〉

, (88)

and only the ratio 〈{ξ+} ∪ {λ−}|{λ}〉/〈{λ}|{λ}〉 remains to be calculated. But here another
combinatorial result for the XXZ chain applies.

Lemma 2 ([15]). Let {λj }Mj=1 be a solution of the Bethe ansatz equations (49) and {µk}Mk=1
any set of distinct complex numbers. Then

〈0|C(µ1) . . . C(µM)B(λ1) . . . B(λM)|0〉

=
[∏M

j=1 d(λj )a(µj )
]∏M

j,k=1 sh(λj − µk + η)∏
1�j<k�M sh(λj − λk) sh(µk − µj)

det N̂(λj , µk), (89)

where

N̂(λj , µk) = t (λj , µk) − t (µk, λj )
d(µk)

a(µk)

M∏
l=1

f (µk, λl)

f (λl, µk)
. (90)

In order to apply lemma 2 to our task of calculating 〈{ξ+} ∪ {λ−}|{λ}〉/〈{λ}|{λ}〉 we first
insert the set of Bethe roots that characterize the leading eigenvalue of the quantum transfer
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matrix into (89), (90). Then M = N/2, and the right-hand side of (90) can be expressed in
terms of the auxiliary function (51),

N̂(λj , µk) = t (λj , µk) − t (µk, λj )a(µk). (91)

Taking account of the Bethe ansatz equations a(λk) = −1 it is easy to study the limit µk → λk

in (89): the pre-factor is regular in this limit. Concerning the matrix N̂ only the kth column is
affected,

lim
µk→λk

N̂(λj , µk) = δ
j

k

a′(λk)

a(λk)
+

sh(2η)

sh(λj − λk + η) sh(λj − λk − η)
. (92)

Adopting for a while the notation

λ̃j =
{
λ+

j for j = 1, . . . , |ξ+|
λ−

j−|ξ+| for j = |ξ+| + 1, . . . , N/2,

ξ̃j = ξ+
j for j = 1, . . . , |ξ+| = n,

(93)

we infer from (89)–(92) that

〈{ξ+} ∪ {λ−}|{λ}〉
〈{λ}|{λ}〉 =

 n∏
j=1

a(ξ̃j )

a(λ̃j )

 N/2∏
j=n+1

n∏
k=1

f (λ̃j , ξ̃k)

f (λ̃j , λ̃k)


×
 n∏

j,k=1

sh(λ̃j − ξ̃k + η)

sh(λ̃j − λ̃k + η)

 ∏
1�j<k�n

sh(λ̃j − λ̃k)

sh(ξ̃j − ξ̃k)

 det Nn

det N0
, (94)

where

Nn
j

k =


t (λ̃j , ξ̃k) − t (ξ̃k, λ̃j )a(ξ̃k) k = 1, . . . , n

δ
j

k

a′(λ̃k)

a(λ̃k)
+

sh(2η)

sh(λ̃j − λ̃k + η) sh(λ̃j − λ̃k − η)
k = n + 1, . . . , N/2.

(95)

The observation that the columns of Nn and N0 are identical for k > n allows one to simplify
the ratio of the two determinants on the right-hand side of (94). In the appendix we prove the
following:

Lemma 3. The ratio of the two determinants on the right-hand side of (94) is proportional to
the determinant of an n × n matrix,

det Nn

det N0
=
[

n∏
l=1

1 + a
(
ξ+
l

)
a′(λ+

l

) ] det G
(
λ+

j , ξ
+
k

)
, (96)

where the function G(λ, ξ) is the solution of the linear integral equation

G(λ, ξ) = t (ξ, λ) +
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

G(ω, ξ)

1 + a(ω)
(97)

to be solved on the same canonical contour C as the non-linear integral equation for the
auxiliary function a.

Note that G(λ, ξ) is an inhomogeneous generalization of the ‘finite temperature density
function’ G(λ), equation (72), that determines the magnetization (74).
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Using the lemma in (94) and switching back to our original notation we obtain the
following result:

〈{ξ+} ∪ {λ−}|{λ}〉
〈{λ}|{λ}〉 =

 |ξ+|∏
j=1

a
(
ξ+
j

)(
1 + a
(
ξ+
j

))
a
(
λ+

j

)
a′(λ+

j

)
|λ−|∏

j=1

|ξ+|∏
k=1

f
(
λ−

j , ξ+
k

)
f
(
λ−

j , λ+
k

)


×
 |ξ+|∏

j,k=1

sh
(
λ+

j − ξ+
k + η

)
sh
(
λ+

j − λ+
k + η
)
 ∏

1�j<k�|ξ+|

sh
(
λ+

j − λ+
k

)
sh
(
ξ+
j − ξ+

k

)
 det G

(
λ+

j , ξ
+
k

)
. (98)

Finally, we use lemma 1 and equations (87), (98) in (88) and remove the explicit dependence
on the λ−

j from the resulting expression. The latter is possible by proper use of the auxiliary
function a and the Bethe ansatz equations (49). The calculation is elementary but slightly
tedious. We obtain

Lemma 4. The finite Trotter number approximant �N(ϕ|{ξ}), equation (75), has the following
representation as a sum over partitions of the Bethe roots {λ}, which characterize the leading
eigenvalue, and of the inhomogeneity parameters {ξ},

�N(ϕ|{ξ}) =
∑

({λ+},{λ−})∈p2{λ}
({ξ+},{ξ−})∈p2{ξ}
|ξ+|+|λ−|=N/2

Y|ξ+|({λ+}|{ξ+})Z|ξ+|({λ+}|{ξ+}|{ξ−})[∏|ξ+|
j=1 a′(λ+

j

)] [∏|ξ−|
j=1

(
1 + a(ξ−

j )
)] , (99)

where the two functions Yn({λ+}|{ξ+}) and Zn({λ+}|{ξ+}|{ξ−}) are defined as follows,

Yn({λ+}|{ξ+}) =
 n∏

j=1

b
(
λ+

j

)
b

′(
ξ+
j

)
 n∏

j,k=1

sh
(
λ+

j − ξ+
k + η

)
sh
(
λ+

j − ξ+
k − η

)
sh
(
ξ+
j − ξ+

k + η
)
sh
(
λ+

j − λ+
k − η

)


× M̃
(
λ+

j , ξ
+
k

)
det G

(
λ+

j , ξ
+
k

)
(100)

with

b(λ) =
m∏

k=1

1

f (λ, ξk)
, (101)

M̃
(
λ+

j , ξ
+
k

) = t
(
ξ+
k , λ+

j

)
+ t
(
λ+

j , ξ
+
k

)
eϕ

n∏
l=1

sh
(
λ+

j − λ+
l − η

)
sh
(
λ+

j − ξ+
l + η

)
sh
(
λ+

j − λ+
l + η
)
sh
(
λ+

j − ξ+
l − η

) , (102)

and G(λ, ξ) is the solution of the linear integral equation (97).

Zn({λ+}|{ξ+}|{ξ−}) =
m−n∏
j=1

[
1 + eϕa(ξ−

j )

n∏
k=1

f
(
ξ−
j , ξ+

k

)
f
(
λ+

k , ξ
−
j

)
f
(
ξ+
k , ξ−

j

)
f
(
ξ−
j , λ+

k

)] . (103)

3.2. From sums to integrals

In the final step of our calculation, we would now like to express the sums over partitions
in (99) as multiple integral over certain canonical paths. We shall apply a similar rationale as
in [5, 6].
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Figure 2. The path C − �.

Consider a function f (ω1, . . . , ωn) : C
n → C, symmetric in its arguments, equal to zero

if any two of its arguments agree, and analytic on and inside the simple n-fold contour Cn. The
function 1 +a(ω) is meromorphic inside the rectangle Q (see section 2.6), where its only zeros
are the simple zeros located at those Bethe roots which characterize the leading eigenvalue of
the quantum transfer matrix. Hence, the only poles of the meromorphic function 1/(1 + a(ω))

inside C are simple poles at the Bethe roots with residues

res

{
1

1 + a(ω)

}∣∣∣∣
ω=λj

= 1

a′(λj )
, j = 1, . . . , N/2. (104)

It follows that

1

n!

∫
Cn

 n∏
j=1

dωj

2π i(1 + a(ωj ))

 f (ω1, . . . , ωn) =
∑

({λ+},{λ−})∈p2{λ}
|λ+|=n

f
(
λ+

1, . . . , λ
+
n

)∏n
j=1 a′(λ+

j

) . (105)

Below we shall use this formula from the right to the left in order to rewrite sums over partitions
as multiple integrals.

In order to apply (105) we split the sum in (99) as

∑
({λ+},{λ−})∈p2{λ}
({ξ+},{ξ−})∈p2{ξ}
|ξ+|+|λ−|=N/2

=
m∑

n=0

∑
({ξ+},{ξ−})∈p2{ξ}

|ξ+|=n

∑
({λ+},{λ−})∈p2{λ}

|λ+|=n

. (106)

We would like to apply (105) to the rightmost sum in (106) after inserting it into (99). However,
Yn({λ+}|{ξ+})Zn({λ+}|{ξ+}|{ξ−}) is not analytic in the variables λ+

j inside Cn, but for every
λ+

j has simple poles at λ+
j = ξ+

k for k = 1, . . . , n (the function G(λ, ξ) has a simple pole at
λ = ξ (see the appendix), the simple poles of det M̃

(
λ+

j , ξ
+
k

)
at λ+

j = ξ+
k are compensated by

the simple zeros of b
(
λ+

j

)
). Recall that the ξj are free parameters. We choose them distinct

from the Bethe roots λj and all inside C. Then there is a simple closed contour � encircling all
the ξj but none of the Bethe roots λj , and Yn({λ+}|{ξ+})Zn({λ+}|{ξ+}|{ξ−}) is analytic inside
C − � (see figure 2). Thus, (105) applies to C − �, and we obtain
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({λ+},{λ−})∈p2{λ}

|λ+|=n

Yn({λ+}|{ξ+})Zn({λ+}|{ξ+}|{ξ−})[∏n
j=1 a′(λ+

j

)] [∏m−n
j=1 (1 + a(ξ−

j ))
]

= 1

n!

∫
(C−�)n

 n∏
j=1

dωj

2π i(1 + a(ωj ))

m−n∏
j=1

1

(1 + a(ξ−
j ))


×Yn

({ωj }nj=1|{ξ+})Zn

({ωj }nj=1

∣∣{ξ+}|{ξ−}) . (107)

This is already a multiple integral representation. Note, however, that it is still inappropriate
for performing the homogeneous limit and the Trotter limit for two reasons. First, the integrand
still contains the auxiliary function a(ξ−

j ) which cannot be removed by applying a formula like
(105) to the variables ξk . But the Trotter limit and the limit ξ → 0 in a(ξ) do not commute.
Second, since the origin is a limit point of the sequence of Bethe numbers that determine the
leading eigenvalue of the quantum transfer matrix in the Trotter limit, we could not avoid that
Bethe roots cross the contour � if it includes the origin which in turn would be necessary
in order to perform the homogeneous limit. The way out of these problems is amazingly
straightforward. In the next two sections, we calculate the �-integrals explicitly and sum up
the resulting terms. In this procedure all unpleasant terms a(ξ−

j ) cancel each other.

3.3. Evaluation of the �-integrals

Due to the symmetry in the ωj of the integrand in (107) we may replace the integral with∫
(C−�)n

n∏
j=1

dωj =
n∑

k=0

(n
k

)
(−1)k

∫
Cn−k

n−k∏
j=1

dωj

∫
�k

 k∏
j=1

dωj

 . (108)

Our next task is to evaluate the �-integrals. This can be achieved by means of the residue
theorem. We obtain the following result,∫

�k

 k∏
j=1

dωn−k+j

2π i(1 + a(ωn−k+j ))

Yn

({ωj }nj=1

∣∣{ξ+})Zn

({ωj }nj=1

∣∣{ξ+}∣∣{ξ−})

= k!
∑

({ξ++},{ξ+−})∈p2{ξ+}
|ξ+−|=k

Yn−k

({ωj }n−k
j=1

∣∣{ξ++})
 k∏

j=1

1(
1 + a
(
ξ+−
j

))


×
m−n∏

j=1

(
1 + eϕa(ξ−

j )

n−k∏
l=1

f
(
ξ−
j , ξ++

l

)
f (ωl, ξ

−
j )

f
(
ξ++
l , ξ−

j

)
f (ξ−

j , ωl)

)
×
 k∏

j=1

(
1 − eϕ

n−k∏
l=1

f
(
ξ+−
j , ξ++

l

)
f
(
ωl, ξ

+−
j

)
f
(
ξ++
l , ξ+−

j

)
f
(
ξ+−
j , ωl

))
 . (109)

3.4. Resummation of the C-integrals

Inserting (107)–(109) into (99) we obtain an expression that contains only integrals over the
canonical contour C. Yet the summation with respect to the inhomogeneity parameters ξj looks
more complicated than before. It turns out that these sums can be simplified considerably by
applying the following:
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Lemma 5. For any function F(ξ) the identity

|ξ |∑
k=0

(−1)k
∑

({ξ+},{ξ−})∈p2{ξ}
|ξ+|=k

|ξ−|∏
j=1

(1 + eϕa(ξ−
j )F (ξ−

j ))

 |ξ+|∏
j=1

(
1 − eϕF

(
ξ+
j

))

= e|ξ |ϕ
|ξ |∏

j=1

F(ξj )(1 + a(ξj )) (110)

holds.

Thanks to this lemma we end up with the equation

�N(ϕ|{ξ}) =
m∑

n=0

e(m−n)ϕ

n!

∑
({ξ+},{ξ−})∈p2{ξ}

|ξ+|=n

 n∏
j=1

1

b′(ξ+
j

)


×
∫
Cn

 n∏
j=1

dωjb(ωj )

2π i(1 + a(ωj ))

 n∏
j,k=1

sh
(
ωj − ξ+

k − η
)

sh
(
ξ+
j − ξ+

k − η
)


× det M
(
ωj , ξ

+
k

)
det G

(
ωj , ξ

+
k

)
(111)

for the finite Trotter number approximant to the generating function (35) of the σ z–σ z

correlation functions. Here we introduced the new abbreviations

b(λ) =
m∏

k=1

1

f (ξk, λ)
, (112)

M
(
ωj , ξ

+
k

) = t
(
ξ+
k , ωj

) n∏
l=1

sh
(
ωj − ξ+

l − η
)

sh(ωj − ωl − η)
+ t
(
ωj , ξ

+
k

)
eϕ

n∏
l=1

sh
(
ωj − ξ+

l + η
)

sh(ωj − ωl + η)
. (113)

The integral on the right-hand side of (111) is analytic and symmetric in the ξ+
j inside Cn.

It vanishes if any two of the ξj are identical. The function 1/b(λ) is meromorphic inside C
with only simple poles located at λ = ξj . Hence, we can apply (105) to any simple closed
contour � which lies inside C and encircles all the inhomogeneities ξj . It follows that

�N(ϕ|{ξ}) =
m∑

n=0

e(m−n)ϕ

(n!)2

 n∏
j=1

∫
�

dζj

2π ib(ζj )

∫
C

dωjb(ωj )

2π i(1 + a(ωj ))


×
 n∏

j,k=1

sh(ωj − ζk − η)

sh(ζj − ζk − η)

 det M(ωj , ζk) det G(ωj , ζk). (114)

This is our final formula for the finite Trotter number approximant �N(ϕ|{ξ}). We are now in
a position to take the homogeneous limit and the Trotter limit analytically.

3.5. Taking the limits

The information about the inhomogeneities is contained in the function b(λ). From its
definition we see immediately that

lim
ξ1,...,ξm→0

b(λ) =
(

sh(λ)

sh(λ − η)

)m

. (115)
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The information about the discreteness of the Trotter decomposition, on the other hand, is
implicit in the function a(λ). Taking the Trotter limit means taking a(λ) as a solution of
equation (63). Thus, we conclude and summarize our main result.

Theorem. The generating function of the σ z–σ z correlation functions of the XXZ chain has
the following integral representation,〈

exp

{
ϕ

m∑
n=1

en
2
2

}〉
T ,h

=
m∑

n=0

e(m−n)ϕ

(n!)2

 n∏
j=1

∫
�

dζj

2π i

(
sh(ζj − η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj − η)

)m


×
 n∏

j,k=1

sh(ωj − ζk − η)

sh(ζj − ζk − η)

 det M(ωj , ζk) det G(ωj , ζk), (116)

where a(λ) is the auxiliary function (63) that determines the free energy in the Trotter limit,

M(ωj , ζk) = t (ζk, ωj )

n∏
l=1

sh(ωj − ζl − η)

sh(ωj − ωl − η)
+ t (ωj , ζk) eϕ

n∏
l=1

sh(ωj − ζl + η)

sh(ωj − ωl + η)
, (117)

and the function G(λ, ζ ) is the solution of the linear integral equation

G(λ, ζ ) = t (ζ, λ) +
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

G(ω, ζ )

1 + a(ω)
. (118)

The contour C is the canonical contour in the non-linear integral equation formalism (see
figure 1). � is any simple closed contour which lies inside C and encircles the origin.

As we have seen in sections 2.7 and 2.8 both auxiliary functions, a and a, can be
equivalently used to express physical quantities. To switch from one representation to the
other one can use the identity

1

1 + a(λ)
= 1 − 1

1 + a(λ)
. (119)

Inserting it into (118) and using

sh(2η)

sh(λ − ζ + η) sh(λ − ζ − η)
= t (λ, ζ ) + t (ζ, λ) (120)

we find, for instance,

G(λ, ζ ) = −t (λ, ζ ) −
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

G(ω, ζ )

1 + a(ω)
(121)

which equally well defines the inhomogeneous density function G(λ, ζ ). The task of
re-expressing the multiple integral representation (116) in terms of a is, of course, more
cumbersome. One may, for instance, start from (114), insert (119), evaluate the integrals
which do not contain a, and resum the resulting terms in a similar way as in section 3.4. One
arrives at the following:
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Corollary. When expressed in terms of a the generating function takes the form〈
exp

{
ϕ

m∑
n=1

en
2
2

}〉
T ,h

=
m∑

n=0

(−1)n

(n!)2

 n∏
j=1

∫
�

dζj

2π i

(
sh(ζj + η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj + η)

)m


×
 n∏

j,k=1

sh(ωj − ζk + η)

sh(ζj − ζk + η)

 det M(ωj , ζk) det G(ωj , ζk), (122)

where M(ωj , ζk) and G(ωj , ζk) are the same as in theorem 1.

In the remaining sections we shall discuss several special cases and limits of (116) and (122).

3.6. One-point function

We begin with the one-point function obtained from (116) or (122), respectively, for m = 1.
In this case the sums on the right-hand side of (116) and (122) consist of only two terms, the
first of which does not contain any integral. In the second term the integration over � can
easily be performed, and one remains with the formulae〈(

1 0
0 eϕ

)
1

〉
T ,h

= eϕ − (1 − eϕ)

∫
C

dω

2π i

G(ω)

1 + a(ω)
= 1 + (1 − eϕ)

∫
C

dω

2π i

G(ω)

1 + a(ω)
. (123)

Here we inserted the identity G(ω) = G(ω, 0) which is obtained by comparing (72) and (118).
Setting ϕ = 0 in the above equation both expressions for the one-point function yield 1

as it has to be. Setting ϕ = iπ , on the other hand, and multiplying (123) by 1/2 we obtain two
formulae for the magnetization,〈

Sz
1

〉
T ,h

= −1

2
−
∫
C

dω

2π i

G(ω)

1 + a(ω)
= 1

2
+
∫
C

dω

2π i

G(ω)

1 + a(ω)
. (124)

These formulae are the same as obtained in section 2.8 based on a completely different
reasoning, namely by taking the derivative of the free energy with respect to the magnetic
field.

3.7. Emptiness formation probability

In the limiting cases ϕ → ±∞ (for ϕ → ∞ one has to multiply by e−mϕ first in order to obtain a
finite result) our formulae (116) and (122) simplify considerably. The resulting expressions on
the left-hand side of (116) and (122),

〈
e1

1
1 . . . em

1
1

〉
T ,h

or
〈
e1

2
2 . . . em

2
2

〉
T ,h

, respectively, describe
the probability to find a string of up- or down-spins of length m. For spin chains these
probabilities were introduced in [13]. They are named the ‘emptiness formation probability’
and recently became popular, since the integrals in the zero temperature multiple integral
representation of the emptiness formation probability [4, 13] could be evaluated explicitly for
small m [1].

For finite temperatures our formulae (116) and (122) yield the two alternative expressions〈
e1

1
1 . . . em

1
1

〉
T ,h

= 1

(m!)2

 m∏
j=1

∫
�

dζj

2π i

(
sh(ζj − η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj − η)

)m


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×
 n∏

j,k=1

sh2(ωj − ζk − η)

sh(ζj − ζk − η) sh(ωj − ωk − η)

 det t (ζk, ωj ) det G(ωj , ζk)

(125a)

=
m∑

n=0

(−1)n

(n!)2

 n∏
j=1

∫
�

dζj

2π i

(
sh(ζj + η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj + η)

)m


×
 n∏

j,k=1

sh(ωj − ζk + η) sh(ωj − ζk − η)

sh(ζj − ζk + η) sh(ωj − ωk − η)

 det t (ζk, ωj ) det G(ωj , ζk)

(125b)

for
〈
e1

1
1 . . . em

1
1

〉
T ,h

and, similarly,〈
e1

2
2 . . . em

2
2

〉
T ,h

= (−1)m

(m!)2

 m∏
j=1

∫
�

dζj

2π i

(
sh(ζj + η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj + η)

)m


×
 n∏

j,k=1

sh2(ωj − ζk + η)

sh(ζj − ζk + η) sh(ωj − ωk + η)

 det t (ωj , ζk) det G(ωj , ζk)

(126a)

=
m∑

n=0

1

(n!)2

 n∏
j=1

∫
�

dζj

2π i

(
sh(ζj − η)

sh(ζj )

)m ∫
C

dωj

2π i(1 + a(ωj ))

(
sh(ωj )

sh(ωj − η)

)m


×
 n∏

j,k=1

sh(ωj − ζk + η) sh(ωj − ζk − η)

sh(ζj − ζk + η) sh(ωj − ωk − η)

 det t (ωj , ζk) det G(ωj , ζk).

(126b)

3.8. Zero temperature limit

How can we make contact with the zero temperature results obtained in [5]? It is clear by
inspection that the auxiliary functions a and a defined by (63) and (65) do not approach a
limit as T goes to zero. The inhomogeneities are unbounded in T. In order to obtain a sensible
result we have to multiply by T first. Setting ε(λ) = −T ln(a(λ)) = T ln( a(λ)) the non-linear
integral equations turn into

ε(λ) = h +
2J sh2(η)

sh(λ) sh(λ + η)
+
∫
C

dω

2π i

sh(2η)T ln(1 + e−ε(ω)/T )

sh(λ − ω + η) sh(λ − ω − η)
(127a)

= h − 2J sh2(η)

sh(λ) sh(λ − η)
+
∫
C

dω

2π i

sh(2η)T ln(1 + eε(ω)/T )

sh(λ − ω + η) sh(λ − ω − η)
. (127b)

Here we shift the left and right edges of the integration contour to ±η/2, where ε(λ) is
real (recall that the contributions from the upper and the lower edge cancel each other). We
see that it only matters if ε(λ) is positive or negative as T goes to zero. In (127a) only the
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negative part of ε(λ) on the contour contributes to the zero temperature limit, in (127b) only
the positive part. This divides the contour C into two disjoint pieces C(+) and C(−) on which
ε(λ) can be calculated by means of the linear integral equations

ε(λ) = h +
2J sh2(η)

sh(λ) sh(λ + η)
−
∫
C(−)

dω

2π i

sh(2η)ε(ω)

sh(λ − ω + η) sh(λ − ω − η)
, (128a)

ε(λ) = h − 2J sh2(η)

sh(λ) sh(λ − η)
+
∫
C(+)

dω

2π i

sh(2η)ε(ω)

sh(λ − ω + η) sh(λ − ω − η)
. (128b)

These integral equations can be transformed into integral equations for dressed energies, which
is, however, not our actual aim. The most important conclusion instead is that

1

1 + a(λ)
= 1

1 + eε(λ)/T

T →0−→
{

0 on C(+)

1 on C(−) . (129)

This function behaves like a ‘Fermi function on C’.
Applying (129) to the integral equation (121) and shifting the arguments appropriately

we obtain

−G
(
λ − η

2
, ζ − η

2

)
−
∫
C(−)+ η

2

dω

2π i

sh(2η)G
(
ω − η

2 , ζ − η

2

)
sh(λ − ω + η) sh(λ − ω − η)

= t (λ, ζ ). (130)

This equation has to be compared with equation (2.16) of [5]. The two equations agree if we
set

G
(
λ − η

2
, ζ − η

2

)
= 2π iρ(λ, ζ ) (131)

and identify the integration contour in equation (2.16) of [5] with −(C(−) + η

2

)
. A close

inspection (for details see, e.g., [10]) of (127) and (128) shows indeed that (for h > 0, η < 0!)
the contour C(−) is a line segment Re λ = η/2,−α < Im λ < α (where α > 0 depends on the
magnetic field h). This is sufficient to identify (130) with (2.16) of [5].

Let us introduce the shorthand notation I = −(C(−) + η

2

)
. Then, using (129) and (131),

our second expression (122) for the generating function of the σ z–σ z correlation functions
can be evaluated in the zero temperature limit. We obtain

lim
T →0

〈
exp

{
ϕ

m∑
n=1

en
2
2

}〉
T ,h

=
m∑

n=0

1

(n!)2

 n∏
j=1

∫
�+ η

2

dζj

2π i

(
sh
(
ζj + η

2

)
sh
(
ζj − η

2

))m ∫
I

dωj

(
sh
(
ωj − η

2

)
sh
(
ωj + η

2

) )m


×
 n∏

j,k=1

sh(ωj − ζk + η)

sh(ζj − ζk + η)

 det M(ωj , ζk) det ρ(ωj , ζk), (132)

where ρ(λ, ζ ) is the solution of the linear integral equation

−2π iρ(λ, ζ ) +
∫
I

dω
sh(2η)ρ(ω, ζ )

sh(λ − ω + η) sh(λ − ω − η)
= t (λ, ζ ) (133)

which is precisely the result of [5].



Integral representations for correlation functions of the XXZ chain at finite temperature 7649

3.9. High temperature limit

In the limit of infinite temperature all correlations should vanish. How can this be seen
from our formulae? For T → ∞ the inhomogeneity on the right-hand side of the integral
equations (63) and (65) vanishes. The remaining homogeneous equations are solved by
a(λ) = 1 or a(λ) = 1, respectively. Inserting this, for instance, into (116) we see that the only
singularities in the resulting integrand are the simple poles of the function G(ω, ζ ). Therefore
the integrals can be calculated by means of the residue theorem. Using similar techniques as
described in section 3.4 we can simplify the result which finally turns into

lim
T →∞

〈
exp

{
ϕ

m∑
n=1

en
2
2

}〉
T ,h

=
(

1 + eϕ

2

)m

. (134)

Applying (36) we obtain

lim
T →∞

〈
σ z

1 σ z
m

〉
T ,h

= 0 (135)

as we expected.

4. Conclusions

In this work, integral representations for finite temperature correlation functions of an
integrable model have been derived for the first time. We concentrated on the generating
function (35) of the σ z–σ z correlation functions, since it appeared particularly appropriate to
us for developing the method. Now this method may be applied to other generating functions
and also directly to two-point functions. Work in this direction is underway.

It will be very interesting to study the integral representations further. How can they
be utilized to obtain the long-distance asymptotics? How efficient are they for numerical
calculations? Are there special cases where part of the integrations can be performed
analytically? We hope to address these questions in forthcoming publications.

We restricted our presentation to the off-critical regime � > 1. We would like to stress,
however, that our results straightforwardly extend to the critical regime |�| � 1, where only
the canonical contour has to be redefined (see figure 3).

λ

Re

η
2

η
2

Im

γ

γ

C

Γ

C

Figure 3. Contours of integration in the critical regime for 0 � � < 1. For −1 < � � 0 one has
to choose |γ | < π

2 − |η|
2 . Alternatively one may switch the sign of J making use of the equivalence

of the parameter regimes −1� � 0, J < 0 and 0 � � < 1, J < 0.

The situation is much the same as in the zero temperature limit [25].
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Appendix. A ratio of determinants

Here we prove lemma 3. We define a column vector n(ξ) with entries

nj (ξ) = t (λ̃j , ξ) − t (ξ, λ̃j )a(ξ), j = 1, . . . , N/2 (A.1)

and another column vector

j(ξ) = N−1
0 n(ξ). (A.2)

The matrices N0 and Nn have the last N/2 − n columns in common. Thus, we conclude that
det Nn

det N0
= det N−1

0 Nn = det( j(ξ̃1), . . . , j(ξ̃n), en+1, . . . , eN/2) = det〈ej , j(ξ̃k)〉, (A.3)

where the ej are the canonical unit column vectors having a single non-zero entry 1 in the j th
row, and j and k on the right-hand side run from 1 to n. In (A.3) we have expressed the ratio
of two N/2 × N/2 determinants as a single n × n determinant, a trick we borrowed from [6].

In the second step of our proof we transform the equation N0 j(ξ) = n(ξ) that determines
j into an integral equation. For this purpose, we first of all rewrite it in components,

−a′(λ̃k) jk(ξ) +
N/2∑
l=1

sh(2η) jl(ξ )

sh(λ̃k − λ̃l + η) sh(λ̃k − λ̃l − η)
= t (λ̃k, ξ) − t (ξ, λ̃k)a(ξ). (A.4)

We define a function

F(λ, ξ) = t (ξ, λ)a(ξ) − t (λ, ξ) +
N/2∑
l=1

sh(2η) jl(ξ )

sh(λ − λ̃l + η) sh(λ − λ̃l − η)
(A.5)

and observe that this function determines j(ξ) through

F(λ̃k, ξ) = a′(λ̃k) jk(ξ). (A.6)

We shall now assume that ξ is located inside our canonical contour C sketched in figure 1.
Then the only singularity of F(λ, ξ) as a function of λ inside the rectangle Q (see again
figure 1) is a simple pole at λ = ξ . The residue at this pole is

res{F(λ, ξ)}|λ=ξ = lim
λ→ξ

sh(λ − ξ)F (λ, ξ) = −1 − a(ξ). (A.7)

This residue gives an additional contribution when we apply equation (105) to (A.5) in order
to transform the sum on the right-hand side into an integral. We end up with

F(λ, ξ) = t (ξ, λ)(1 + a(ξ)) +
∫
C

dω

2π i

sh(2η)

sh(λ − ω + η) sh(λ − ω − η)

F (ω, ξ)

1 + a(ω)
. (A.8)

The latter equation suggests to introduce a function

G(λ, ξ) = F(λ, ξ)

1 + a(ξ)
. (A.9)

This function then solves the linear integral equation (97) defined in lemma 3. Coming back
to our original notation (see (93)) we may finally express the ratio of the two determinants as

det Nn

det N0
=
[

n∏
l=1

1 + a
(
ξ+
l

)
a′(λ+

l

) ] det G
(
λ+

j , ξ
+
k

)
, (A.10)

and our lemma is proved.
Note that it follows from (A.7) and (A.9) that the only singularity of G(λ, ξ) (considered

as a function of λ) inside the rectangle Q is a simple pole with residue −1 at λ = ξ . This fact
is frequently used in the derivation of the multiple integral representations (116) and (122).
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